\frown		EQ's #4. Worksheet Solutions	
	Tuesday 1/8/18- Differe	ntial Equations	
	p.155		
	0.1 A .	3	
25.	f'(x) = 3x - 1; $f(2) = 3$	$f(x) = \frac{3}{2}x^2 - x + c$	
		f(a) = 3	
		$3 = \frac{3}{2}(2)^2 - 2 + C$	
		C = -1 $f(x) = \frac{3}{2}x^2 - x - 1$	
		$f(x) = \overline{z} x^{\alpha} - x - 1$	
5%	$f'(x) = x^2 - 2x + 2; f(3) = -1$	$f'(x) = \frac{1}{3}x^3 - x^2 + 2x + c$	
24,	(1) = 1 $(1) = 1$	f(3) = -1	
		$-1 = \frac{1}{3} (3)^{3} - (3)^{2} + 2(3) + c$	
		-1 = 9 - 9 + 6 + C	
-		$\frac{c = -7}{f(x) = \frac{1}{3}x^3 - x^2 + 2x - 7}$	
Market 1	A		
27.	f''(x) = 2; $f'(4) = 6$, $f(4) = 2$	f''(x) = 2	
		$f'(x) = \partial x + c$	
		f'(y) = 6 (6 = 2(4) + C	
		6 = a(t) + c c = -2	
		f'(x) = 2x - 2	
		$f'(x) = x^2 - 2x + c$	
		f(y) = 2	
		$2 = 4^{2} - 2(4) + C$	
		c = -6 $f(x) = x^2 - 2x - 6$	
		(]	
1			

$() = \lambda X$
=x2+C
f'(-3) = 0
$= (-3)^{2} + C$
2=9
$x) = x^2 - 9$
$x) = \frac{1}{3}x^{3}-9x + C$
f(-3) = 10
$= \frac{1}{3}(-3)^3 - 9(-3) + c$
=-9+27+C
= -8 $\pm x^3 - 9x - 8$
<u>3x²-4x-8</u>
Sinx
cosx + c
TT TT
COSO+C
COS O T C.
0.5x + T - 1
$-\cos \pi + \pi - 1 = 2\pi - 2$
1

$$p.157$$

$$p.15$$

$$\frac{26}{4} \frac{F'(x) = 6x}{2} + \frac{1}{2} + \frac{1}{3} = 20; f(3) = -5}{\frac{F'(x) = 6x}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} = 20; 50 - 20; -20; 50 - 20; -20; 70}{\frac{1}{2} + \frac{1}{2} + \frac{1}{2$$