## Extreme value theorem

If a real-valued function $f$ is continuous in the closed and bounded interval $[\mathrm{a}, \mathrm{b}]$, then $f$ must attain a maximum and a minimum, each at least once.

## INTERMEDIATE VALUE THEOREM

If $f$ is continuous on the closed interval $[\mathrm{a}, \mathrm{b}]$ then $f$ takes on every value between $f(a)$ and $f(b)$.

Suppose $d$ is any number between $f(a)$ and $f(b)$, then there is at least one number $c$ in $[\mathrm{a}, \mathrm{b}]$ such that $f(c)=d$
$\boldsymbol{\delta}:$ The Intermediate value theorem tells you that at least one $c$ exists, but it does not give you a method for finding $c \ldots$ you must do that algebraically or graphically.

$>$ Is $f$ continuous on $[\mathrm{a}, \mathrm{b}]$ ?
$>$ Is $f(b)<d<f(a)$ ?
$>$ In this example, if $a<c<b$, then there are $3 c$ 's such that $f(c)=d$

## Intermediate Value Theorem for Derivatives

If $a$ and $b$ are any two points in an interval on which $f$ is differentiable, then $f^{\prime}$ takes on every value between $f^{\prime}(a)$ and $f^{\prime}(b)$.

## MEAN VALUE THEOREM

If $f$ is continuous on the closed interval $[a, b]$ and differentiable on the open interval $(a, b)$, then there exists a number $c$ in $(a, b)$ such that

$$
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}
$$

Basically, the MVT says ...

| Instantaneous Rate <br> of Change (slope of <br> a tangent line at some <br> point $c$ ) |
| :---: |$=$| Average Rate of <br> Change (slope of <br> secant line joining <br> the endpoints) |
| :---: | :---: |



## Rolle's Theorem

Suppose $f(x)$ is a function that satisfies all of the following.

1. $f(x)$ is continuous on the closed interval $[a, b]$.
2. $f(x)$ is differentiable on the open interval $(a, b)$.
3. $f(a)=f(b)$

Then there is a number $c$ such that $a<c<b$ and $f^{\prime}(c)=0$.
Or, in other words $f(x)$ has a critical point in $(a, b)$.


