DEQ Practice

find the general solution to the following differential equations, then find the particular solution using the initial condition.

4.
$$\frac{dy}{dx} = \frac{x}{y}, \ y(1) = 2$$

5.
$$\frac{dy}{dx} = -\frac{x}{y}$$
, $y(4) = 3$ 6. $\frac{dy}{dx} = \frac{y}{x}$, $y(2) = 2$

6.
$$\frac{dy}{dx} = \frac{y}{x}, \ y(2) = 2$$

7.
$$\frac{dy}{dx} = 2xy, \ y(0) = 3$$

7.
$$\frac{dy}{dx} = 2xy$$
, $y(0) = 3$ 8. $\frac{dy}{dx} = (y+5)(x+2)$, $y(0) = -1$ 9. $\frac{dy}{dx} = \cos^2 y$, $y(0) = 0$

9.
$$\frac{dy}{dx} = \cos^2 y$$
, $y(0) = 0$

10.
$$\frac{dy}{dx} = (\cos x)e^{y+\sin x}$$
, $y(0) = 0$ 11. $\frac{dy}{dx} = e^{x-y}$, $y(0) = 2$ 12. $\frac{dy}{dx} = -2xy^2$, $y(1) = 0.25$

11.
$$\frac{dy}{dx} = e^{x-y}$$
, $y(0) = 2$

12.
$$\frac{dy}{dx} = -2xy^2$$
, $y(1) = 0.25$

13.
$$\frac{dy}{dx} = \frac{4\sqrt{y}\ln x}{x}$$
, $y(e) = 1$

14. For each of #4 - #13, write an equation for the line tangent to the graph of y at the given point.

1.	$y dy = x dx$ $\frac{1}{a} y^2 = \frac{1}{2} x^2 + c$
10	
	y2 = x2+C
	(1,2): 4=1+c
	2 2 2
	$y^2 = x^2 + 3$ $y = \sqrt{x^2 + 3}$
	$y = \sqrt{x^2 + 3}$
0	
2.	ydy=2xdx ln y =x2+c
	(0,3): .ln3=0+C
	011 2 = ln3
	$ln y = x^2 + ln3$
	$y = e = e$ $y = 3e^{x^2}$
	y=3e"
3	$\frac{dy}{dx} = (\cos x)(e^{y})(e^{5\ln x})$
,	$dx = (\cos x)(e^x)(e^x)$ $e^{-y}dy = \cos x e \Rightarrow u = \sin x$
	e ag = cosx e > u=sinx
	-e-4 = gendu du=cosx
3	
	- e + c -> Kesubstituk u=sinx
	$-e^{-4} = e + c \rightarrow Resubstitute u=sinx$ $-e^{-4} = e^{sinx} + c$ $-e^{-4} = e^{sinx}$
114	$e^{-4} = -e^{\sin x} + c$
	-y= ln (-e sinx +c)
	-y= ln (-e +c)
	$y = -ln(-e^{sinx} + c)$
	(0,0): 0=-ln(-e+c)
	$0 = -\ln(-1+c)$
	0 = + ln(-1+c)
	e = e ln(-1+c)
	1 = -1+c
	; sios 17 c=2
	y=-ln(-e"+a) ==

4.	y = 3 dy = 4(x) loxdx (u=lox; du=x dx)
1,	0 to 4 (+) (0)2.
	$2\sqrt{y} = 4\left(\frac{1}{2}\right)\left(\ln x\right)^2 + C$ $\sqrt{y} = \left(\ln x\right)^2 + C$
	Jy = (lnx) +C
	g= ((e,1): 1= (ne)2+c
	1=1+0
	C=0
	$Jy = (\ln x)^{a}$ $y = (\ln x)^{4}$
	y = (lnx)
ぢ,	$y dy = -x dx \qquad \frac{1}{2}y^2 = -\frac{1}{2}x^2 + c$
	$y^2 = -x^2 + c$ (4,3): $9 = -16 + c$
	(4.3): 9=-110+C
	c=25
	$y^2 = -x^2 + 25$
	$y = \sqrt{-x^2 + 25}$
6.	$\frac{1}{y+5} dy = (x+2) dx $
	(0,-1): In+= c
	$\ln y+5 = \frac{1}{2}x^2 + 2x + \ln 4$ $ y+5 = e^{\frac{1}{2}x^2 + 2x + \ln 4}$
	4+5 = e21+21+21
	y+5= 4 0 2x2+2x
	$y + 5 = 4 e^{\frac{1}{2}x^2 + 2x}$ $y = 4 e^{\frac{1}{2}x^2 + 2x} - 5$
	*
. 7.	$\frac{dy}{dx} = \frac{e}{ey}$ $\frac{e}{dy} = \frac{e}{e} dx$
	$\frac{dy}{dx} = \frac{e}{ey} \qquad e^{y}dy = e^{x}dx$ $e^{y} = e^{x} + c$
	e = e + c
	$(0,2)$: $e^2 = e^2 + e$ $e^2 = e^2 - 1$
	c=e*-1
	e"=ex+e2-1
	$y = \ln(e^{x} + e^{2} - 1)$

8,	ydy= xdx	enly = lux +c	
		(2,2): ln2=ln2+c	
		c=0	
		luly = lux	
		y = X	
2	<u>i</u> , ,		
9.	coszy dy = dx	tany = x +C	
	sec2y dy = dx	(0,0): tan0=c	
		c= 0	
		tany = X	
		tany = x $y = tan'x$	
10.	- 1 - 2014	$-\frac{1}{y}=-x^2+c$	
10.	1/2 dy = -2xdx	9-77-	
		(1,0.25) (1,4): = -1+c	
		(1, 4): ==-1+c	
		-4=-1+0	
		c=-3	
		$-\dot{y} = -x^2 - 3$	
		y= x2+3	
/			
		y= x2+3	
- 1	7		
7 4	-/		
	У.		
	•		

#11:	1) $\frac{dy}{dx}$ at $(1,2) = \frac{1}{2}$ $y-2 = \frac{1}{2}(x-1)$
	2) Frat (0,3) = 0 [y-3=0] y=3
	3) dy at (0,0)=1
	4) $\frac{dy}{dx} = \frac{4\sqrt{e} \ln 1}{y-1} = \frac{4\sqrt{e} \ln 1}{y-1} = \frac{y-1}{y} = \frac{y-1}{y}$
	5) $\frac{dy}{dx}$ at $(4,3) = -\frac{4}{3}$ $y-3 = -\frac{4}{3}(x-4)$
	6) $\frac{dy}{dx} \frac{d}{dt} (0,-1) = (-1+5)(0+2)$ $y+1=8(x-0)$
	7) $\frac{dy}{dx}$ at $(0,2) = e^{-2} = e^{2}$ $(y-2=e^{2}(x-0))$
	8) $\frac{dy}{dx}$ $at(2,2) = \frac{2}{2} = 1$ $y-2 = 1(x-2)$
	9) $\frac{dy}{dx} at(0,0) = \cos^2 0 = 1$ $y = 0 = 1(x - 0) y = x$
	(a) $\frac{d}{dx} \frac{d}{dx} (1, \frac{1}{4}) = -2(1)(\frac{1}{4}) = -\frac{1}{8} \left(\frac{1}{4} - \frac{1}{8}(x-1) \right)$