find the general solution to the following differential equations, then find the particular solution using the initial condition.
4. $\frac{d y}{d x}=\frac{x}{y}, y(1)=2$
5. $\frac{d y}{d x}=-\frac{x}{y}, y(4)=3$
6. $\frac{d y}{d x}=\frac{y}{x}, y(2)=2$
7. $\frac{d y}{d x}=2 x y, y(0)=3$
8. $\frac{d y}{d x}=(y+5)(x+2), y(0)=-1$
9. $\frac{d y}{d x}=\cos ^{2} y, y(0)=0$
10. $\frac{d y}{d x}=(\cos x) e^{y+\sin x}, y(0)=0$
11. $\frac{d y}{d x}=e^{x-y}, y(0)=2$
12. $\frac{d y}{d x}=-2 x y^{2}, y(1)=0.25$
13. $\frac{d y}{d x}=\frac{4 \sqrt{y} \ln x}{x}, y(e)=1$
14. For each of \#4-\#13, write an equation for the line tangent to the graph of y at the given point.
1.

$$
\begin{gathered}
y d y=x d x \quad \frac{1}{2} y^{2}=\frac{1}{2} x^{2}+c \\
y^{2}=x^{2}+c \\
\quad(1,2): 4=1+c \\
c=3 \\
y^{2}=x^{2}+3 \\
y=\sqrt{x^{2}+3}
\end{gathered}
$$

2. $\frac{1}{y} d y=2 x d x$

$$
\begin{gathered}
\ln |y|=x^{2}+c \\
(0,3): \ln 3=0+c \\
\quad c=\ln 3 \\
\ln |y|=x^{2}+\ln 3 \\
y=e^{x^{2}+\ln 3}=e^{x^{2}} e^{\ln 3} \\
y=3 e^{x^{2}}
\end{gathered}
$$

3. $\frac{d y}{d x}=(\cos x)\left(e^{y}\right)\left(e^{\sin x}\right)$

$$
\begin{aligned}
& e^{-y} d y=\cos x e^{\sin x} \rightarrow u=\sin x \\
& -e^{-y}=\int e^{u} d u \quad d u=\cos x \\
& -e^{-y}=e^{u}+c \rightarrow \text { Resubstitute } u=\sin x \\
& -e^{-y}=e^{\sin x}+c \\
& e^{-y}=-e^{\sin x}+c \\
& -y=\ln \left(-e^{\sin x}+c\right) \\
& y=-\ln \left(-e^{\sin x}+c\right) \\
& (0,0): 0=-\ln \left(-e^{0}+c\right) \\
& 0=-\ln (-1+c) \\
& \dot{0}=+\ln (-1+c) \\
& e^{0}=e^{\ln (-1+c)} \\
& 1=-1+c \\
& c=2 \\
& y=-\ln \left(-e^{\sin x}+2\right)
\end{aligned}
$$

4. $y^{-\frac{1}{2}} d y=4\left(\frac{1}{x}\right) \ln x d x \quad\left(u=\ln x ; \quad d u=\frac{1}{x} d x\right)$
$2 \sqrt{y}=4\left(\frac{1}{2}\right)(\ln x)^{2}+c$
$\sqrt{y}=(\ln x)^{2}+c$
$(e, 1): \quad 1=(\ln e)^{2}+c$
$1=1+c$
$c=0$
$\sqrt{y}=(\ln x)^{2}$

$$
y=(\ln x)^{4}
$$

5.,$y d y=-x d x$

$$
\begin{aligned}
& \frac{1}{2} y^{2}=-\frac{1}{2} x^{2}+c \\
& y^{2}=-x^{2}+c \\
& \quad(4,3): \quad 9=-16+c \\
& y^{2}=-x^{2}+25
\end{aligned} \quad c=25
$$

6. $\frac{1}{y+5} d y=(x+2) d x$

$$
\begin{aligned}
& \ln |y+5|=\frac{1}{2} x^{2}+2 x+c \\
&(0,-1): \ln 4=c \\
& \ln |y+5|=\frac{1}{2} x^{2}+2 x+\ln 4 \\
&|y+5|=e^{\frac{1}{2} x^{2}+2 x+\ln y} \\
& y+5=4 e^{\frac{1}{2} x^{2}+2 x} \\
& y=4 e^{\frac{1}{2} x^{2}+2 x}-5
\end{aligned}
$$

7. $\quad \frac{d y}{d x}=\frac{e^{x}}{e^{y}} \quad e^{y} d y=e^{x} d x$

$$
e^{y}=e^{x}+c
$$

$$
(0,2): e^{2}=e^{0}+c
$$

$$
\begin{aligned}
& e^{y}=e^{x}+e^{2}-1 \\
& y=\ln \left(e^{x}+e^{2}-1\right)
\end{aligned}
$$

$$
c=e^{2}-1
$$

8.

$$
\begin{gathered}
\frac{1}{y} d y=\frac{1}{x} d x \quad \ln |y|=\ln |x|+c \\
(2,2): \ln 2=\ln 2+c \\
\quad c=0 \\
\ln |y|=\ln |x| \quad \\
y=x
\end{gathered}
$$

9. $\quad \frac{i}{\cos ^{2} y d y=d x}$

$$
\sec ^{2} y d y=d x
$$

$$
\begin{array}{rr}
\tan y=x+c & \\
(0,0): \quad \tan 0=c \\
& c=0 \\
\tan y=x & \\
y=\tan ^{-1} x &
\end{array}
$$

10. $\frac{1}{y^{2}} d y=-2 x d x$

$$
\begin{aligned}
& -\frac{1}{y}=-x^{2}+c \\
& \quad(1,0,25) \quad-\frac{1}{\frac{1}{4}}=-1+c \\
& \quad\left(1, \frac{1}{4}\right):-4=-1+c \\
& c=-3 \\
& -\frac{1}{y}=-x^{2}-3 \\
& \frac{1}{y}=x^{2}+3 \\
& y=\frac{1}{x^{2}+3}
\end{aligned}
$$

\# $11: \quad$ 1) $\frac{d y}{d x}$ at $(1,2)=\frac{1}{2} \quad y-2=\frac{1}{2}(x-1)$
2) $\frac{d y}{d y}$ at $(0,3)=0 \quad y-3=0 \quad y=3$
3) $\frac{d y}{d x}$ at $(0,0)=1 \quad y-0=1(x-0) \quad y=x$
4) $\frac{d y}{d x}$ at $(e, 1)=\frac{4 \sqrt{e} \ln 1}{1} \quad y-1=0(x-e) \quad y=1$

$$
=0
$$

5) $\frac{d y}{d x}$ at $(4,3)=-\frac{4}{3} \quad y-3=-\frac{4}{3}(x-4)$
6)

$$
\begin{array}{rlr}
\frac{d y}{d x} \text { at }(0,-1) & =(-1+5)(0+2) \quad y+1=8(x-0) \\
& =8 &
\end{array}
$$

1) $\frac{d y}{d x}$ at $(0,2)=e^{0-2}=\frac{1}{e^{2}} \quad y-2=\frac{1}{e^{2}}(x-0)$
2) $\frac{d y}{d x}$ at $(2,2)=\frac{2}{2}=1 \quad y-2=1(x-2)$
3) $\frac{d y}{d x}$ at $(0,0)=\cos ^{2} 0=1 \quad y-0=1(x-0) \quad y=x$
4) $\frac{d y}{d x}$ at $\left(1, \frac{1}{4}\right)=-2(1)\left(\frac{1}{4}\right)^{2}=-\frac{1}{8} \quad y-\frac{1}{4}=-\frac{1}{8}(x-1)$
