\qquad

Cross Sections - y-axis

For each problem, find the volume of the specified solid.

1) The base of a solid is the region enclosed by the semicircle $y=\sqrt{16-x^{2}}$ and the x-axis. Cross-sections perpendicular to the y-axis are squares.

$$
\begin{aligned}
& \int_{0}^{4}\left(\sqrt{16-y^{2}}+\sqrt{16-y^{2}}\right)^{2} d y \\
& =\frac{512}{3} \approx 170.667
\end{aligned}
$$

2) The base of a solid is the region enclosed by the circle $x^{2}+y^{2}=49$. Cross-sections perpendicular to the y-axis are squares.

$$
\begin{aligned}
& \int_{-7}^{7}\left(\sqrt{49-y^{2}}+\sqrt{49-y^{2}}\right)^{2} d y \\
& =\frac{5488}{3} \approx 1829.333
\end{aligned}
$$

3) The base of a solid is the region enclosed by the semicircle $y=\sqrt{16-x^{2}}$ and the x-axis.

Cross-sections perpendicular to the y-axis are rectangles with heights twice that of the side in the $x y$-plane.

$$
\begin{aligned}
& 2 \int_{0}^{4}\left(\sqrt{16-y^{2}}+\sqrt{16-y^{2}}\right)^{2} d y \\
& =\frac{1024}{3} \approx 341.333
\end{aligned}
$$

4) The base of a solid is the region enclosed by the circle $x^{2}+y^{2}=25$. Cross-sections perpendicular to the y-axis are rectangles with heights half that of the side in the $x y$-plane.

$$
\begin{aligned}
& \frac{1}{2} \int_{-5}^{5}\left(\sqrt{25-y^{2}}+\sqrt{25-y^{2}}\right)^{2} d y \\
& =\frac{1000}{3} \approx 333.333
\end{aligned}
$$

5) The base of a solid is the region enclosed by $y=-\frac{x^{2}}{9}+4$ and $y=0$. Cross-sections perpendicular to the y-axis are semicircles.

$$
\begin{aligned}
& \frac{\pi}{8} \int_{0}^{4}(\sqrt{36-9 y}+\sqrt{36-9 y})^{2} d y \\
& =36 \pi \approx 113.097
\end{aligned}
$$

6) The base of a solid is the region enclosed by $y=-\frac{x^{2}}{4}+1$ and $y=0$. Cross-sections perpendicular to the y-axis are isosceles right triangles with one leg in the $x y$-plane.

$$
\begin{aligned}
& \frac{1}{2} \int_{0}^{1}(\sqrt{4-4 y}+\sqrt{4-4 y})^{2} d y \\
& =4
\end{aligned}
$$

7) The base of a solid is the region enclosed by $y=-x^{2}+4$ and $y=0$. Cross-sections perpendicular to the y-axis are isosceles right triangles with the hypotenuse in the base.

$$
\begin{aligned}
& \frac{1}{4} \int_{0}^{4}(\sqrt{4-y}+\sqrt{4-y})^{2} d y \\
& =8
\end{aligned}
$$

8) The base of a solid is the region enclosed by the circle $x^{2}+y^{2}=36$. Cross-sections perpendicular to the y-axis are equilateral triangles.

$$
\begin{aligned}
& \frac{\sqrt{3}}{4} \int_{-6}^{6}\left(\sqrt{36-y^{2}}+\sqrt{36-y^{2}}\right)^{2} d y \\
& =288 \sqrt{3} \approx 498.831
\end{aligned}
$$

9) The base of a solid is the region enclosed by a circle with a diameter of 8. Cross-sections perpendicular to the y-axis are equilateral triangles.

$$
\begin{aligned}
& \frac{\sqrt{3}}{4} \int_{-4}^{4}\left(\sqrt{16-y^{2}}+\sqrt{16-y^{2}}\right)^{2} d y \\
& =\frac{256 \sqrt{3}}{3} \approx 147.802
\end{aligned}
$$

10) The base of a solid is the region enclosed by a semicircle with a radius of 3 , lying flat on the x -axis. Cross-sections perpendicular to the y-axis are equilateral triangles.

$$
\begin{aligned}
& \frac{\sqrt{3}}{4} \int_{0}^{3}\left(\sqrt{9-y^{2}}+\sqrt{9-y^{2}}\right)^{2} d y \\
& =18 \sqrt{3} \approx 31.177
\end{aligned}
$$

