\qquad

© 2018 Kuta Software LLC. A ll rights reserved

Volume of Solids with Known Cross Sections

For each problem, find the volume of the specified solid.

1) The base of a solid is the region enclosed by $y=-\frac{x^{2}}{4}+1$ and $y=0$. Cross-sections perpendicular to the x-axis are squares.

$$
\begin{aligned}
& \int_{-2}^{2}\left(-\frac{x^{2}}{4}+1\right)^{2} d x \\
& =\frac{32}{15} \approx 2.133
\end{aligned}
$$

2) The base of a solid is the region enclosed by $y=-\frac{x^{2}}{4}+1$ and $y=0$. Cross-sections perpendicular to the x-axis are rectangles with heights half that of the side in the $x y$-plane.

$$
\begin{aligned}
& \frac{1}{2} \int_{-2}^{2}\left(-\frac{x^{2}}{4}+1\right)^{2} d x \\
& =\frac{16}{15} \approx 1.067
\end{aligned}
$$

3) The base of a solid is the region enclosed by $y=-\frac{x^{2}}{4}+1$ and $y=0$. Cross-sections perpendicular to the x-axis are semicircles.

$$
\begin{aligned}
& \frac{\pi}{8} \int_{-2}^{2}\left(-\frac{x^{2}}{4}+1\right)^{2} d x \\
& =\frac{4 \pi}{15} \approx 0.838
\end{aligned}
$$

4) The base of a solid is the region enclosed by the semicircle $y=\sqrt{25-x^{2}}$ and the x-axis. Cross-sections perpendicular to the x-axis are squares.

$$
\begin{aligned}
& \int_{-5}^{5}\left(\sqrt{25-x^{2}}\right)^{2} d x \\
& =\frac{500}{3} \approx 166.667
\end{aligned}
$$

5) The base of a solid is the region enclosed by the semicircle $y=\sqrt{25-x^{2}}$ and the x-axis. Cross-sections perpendicular to the x-axis are rectangles with heights half that of the side in the x y-plane.

$$
\begin{aligned}
& \frac{1}{2} \int_{-5}^{5}\left(\sqrt{25-x^{2}}\right)^{2} d x \\
& =\frac{250}{3} \approx 83.333
\end{aligned}
$$

6) The base of a solid is the region enclosed by the semicircle $y=\sqrt{25-x^{2}}$ and the x-axis. Cross-sections perpendicular to the x-axis are semicircles.

$$
\begin{aligned}
& \frac{\pi}{8} \int_{-5}^{5}\left(\sqrt{25-x^{2}}\right)^{2} d x \\
& =\frac{125 \pi}{6} \approx 65.45
\end{aligned}
$$

7) The base of a solid is the region enclosed by the semicircle $y=\sqrt{49-x^{2}}$ and the x-axis.

Cross-sections perpendicular to the x-axis are isosceles right triangles with the hypotenuse in the base.

$$
\begin{aligned}
& \frac{1}{4} \int_{-7}^{7}\left(\sqrt{49-x^{2}}\right)^{2} d x \\
& =\frac{343}{3} \approx 114.333
\end{aligned}
$$

8) The base of a solid is the region enclosed by $y=4$ and $y=x^{2}$. Cross-sections perpendicular to the x-axis are isosceles right triangles with the hypotenuse in the base.

$$
\begin{aligned}
& \frac{1}{4} \int_{-2}^{2}\left(4-x^{2}\right)^{2} d x \\
& =\frac{128}{15} \approx 8.533
\end{aligned}
$$

9) The base of a solid is the region enclosed by the ellipse $\frac{x^{2}}{49}+\frac{y^{2}}{4}=1$. Cross-sections perpendicular to the x-axis are isosceles right triangles with one leg in the $x y$-plane.

$$
\begin{aligned}
& \frac{1}{2} \int_{-7}^{7}\left(\sqrt{4-\frac{4 x^{2}}{49}}+\sqrt{4-\frac{4 x^{2}}{49}}\right)^{2} d x \\
& =\frac{224}{3} \approx 74.667
\end{aligned}
$$

10) The base of a solid is the region enclosed by the semicircle $y=\sqrt{16-x^{2}}$ and the x-axis.

Cross-sections perpendicular to the x-axis are isosceles right triangles with one leg in the $x y$ -plane.

$$
\begin{aligned}
& \frac{1}{2} \int_{-4}^{4}\left(\sqrt{16-x^{2}}\right)^{2} d x \\
& =\frac{128}{3} \approx 42.667
\end{aligned}
$$

11) The base of a solid is the region enclosed by the circle $x^{2}+y^{2}=25$. Cross-sections perpendicular to the x-axis are equilateral triangles.

$$
\begin{aligned}
& \frac{\sqrt{3}}{4} \int_{-5}^{5}\left(\sqrt{25-x^{2}}+\sqrt{25-x^{2}}\right)^{2} d x \\
& =\frac{500 \sqrt{3}}{3} \approx 288.675
\end{aligned}
$$

12) The base of a solid is the region enclosed by the ellipse $\frac{x^{2}}{4}+\frac{y^{2}}{9}=1$. Cross-sections perpendicular to the x-axis are equilateral triangles.

$$
\begin{aligned}
& \frac{\sqrt{3}}{4} \int_{-2}^{2}\left(\sqrt{9-\frac{9 x^{2}}{4}}+\sqrt{9-\frac{9 x^{2}}{4}}\right)^{2} d x \\
& =24 \sqrt{3} \approx 41.569
\end{aligned}
$$

